Overblog
Editer l'article Suivre ce blog Administration + Créer mon blog
Bioécologie

Generalized linear mixed models: a practical guide for ecology and evolution

29 Janvier 2015 , Rédigé par Bioécologie Publié dans #Statistique - modélisation - plans expérimentaux

Bolker, Benjamin M., Mollie E. Brooks, Connie J. Clark, Shane W. Geange, John R. Poulsen, M. Henry H. Stevens, and Jada-Simone S. White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127-135.

Abstract - How should ecologists and evolutionary biologists analyze nonnormal data that involve random effects? Nonnormal data such as counts or proportions often defy classical statistical procedures. Generalized linear mixed models (GLMMs) provide a more flexible approach for analyzing nonnormal data when random effects are present. The explosion of research on GLMMs in the last decade has generated considerable uncertainty for practitioners in ecology and evolution. Despite the availability of accurate techniques for estimating GLMM parameters in simple cases, complex GLMMs are challenging to fit and statistical inference such as hypothesis testing remains difficult. We review the use (and misuse) of GLMMs in ecology and evolution, discuss estimation and inference and summarize ‘best-practice’ data analysis procedures for scientists facing this challenge.

More information here and here

Generalized linear mixed models: a practical guide for ecology and evolution
Partager cet article
Repost0
Pour être informé des derniers articles, inscrivez vous :
Commenter cet article